Transition-based dependency parsing as latent-variable constituent parsing

نویسنده

  • Mark-Jan Nederhof
چکیده

We provide a theoretical argument that a common form of projective transitionbased dependency parsing is less powerful than constituent parsing using latent variables. The argument is a proof that, under reasonable assumptions, a transition-based dependency parser can be converted to a latent-variable context-free grammar producing equivalent structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Benchmarking of Statistical Dependency Parsers for French

We compare the performance of three statistical parsing architectures on the problem of deriving typed dependency structures for French. The architectures are based on PCFGs with latent variables, graph-based dependency parsing and transition-based dependency parsing, respectively. We also study the influence of three types of lexical information: lemmas, morphological features, and word cluste...

متن کامل

Combine Constituent and Dependency Parsing via Reranking

This paper presents a reranking approach to combining constituent and dependency parsing, aimed at improving parsing performance on both sides. Most previous combination methods rely on complicated joint decoding to integrate graphand transition-based dependency models. Instead, our approach makes use of a high-performance probabilistic context free grammar (PCFG) model to output k-best candida...

متن کامل

Fast and Robust Multilingual Dependency Parsing with a Generative Latent Variable Model

We use a generative history-based model to predict the most likely derivation of a dependency parse. Our probabilistic model is based on Incremental Sigmoid Belief Networks, a recently proposed class of latent variable models for structure prediction. Their ability to automatically induce features results in multilingual parsing which is robust enough to achieve accuracy well above the average ...

متن کامل

Arc-Standard Spinal Parsing with Stack-LSTMs

We present a neural transition-based parser for spinal trees, a dependency representation of constituent trees. The parser uses Stack-LSTMs that compose constituent nodes with dependency-based derivations. In experiments, we show that this model adapts to different styles of dependency relations, but this choice has little effect for predicting constituent structure, suggesting that LSTMs induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016